Skip to main content
References from previous...cryo
1.Muraca M., Gerunda G., Neri D., Vilei M.T., Granato A., Feltracco P., Meroni M., Giron G., Burlina A.B. Hepatocyte Transplantation as a Treatment for Glycogen Storage Disease Type 1a. Lancet. 2002;359:317–318. doi: 10.1016/S0140-6736(02)07529-3. [DOI] [PubMed] [Google Scholar] - 2.Najimi M., Sokal E. Update on Liver Cell Transplantation. J. Pediatric Gastroenterol. Nutr. 2004;39:311–319. doi: 10.1097/00005176-200410000-00001. [DOI] [PubMed] [Google Scholar]
- 3.Sokal E.M., Smets F., Bourgois A., Maldergem V., Buts J.-P., Reding R., Bernard Otte J., Evrard V., Latinne D., Vincent M.F. Transplantation in a 4-Year-Old Girl with Peroxisomal Biogenesis Disease: Technique, Safety, and Metabolic Follow-Up1. Transplantation. 2003;76:735–738. doi: 10.1097/01.TP.0000077420.81365.53. [DOI] [PubMed] [Google Scholar]
- 4.Strom S.C., Fisher R.A., Thompson M.T., Sanyal A.J., Cole P.E., Ham J.M., Posner M.P. Hepatocyte Transplantation as a Bridge to Orthotopic Liver Transplantation in Terminal Liver Failure. Transplantation. 1997;63:559–569. doi: 10.1097/00007890-199702270-00014. [DOI] [PubMed] [Google Scholar]
- 5.Stéphenne X., Najimi M., Sokal E.M. Hepatocyte Cryopreservation: Is It Time to Change the Strategy? World J. Gastroenterol. 2010;16:1–14. doi: 10.3748/wjg.v16.i1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Tas R.P., Sampaio-Pinto V., Wennekes T., van Laake L.W., Voets I.K. From the Freezer to the Clinic. Embo Rep. 2021;22:e52162. doi: 10.15252/embr.202052162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Shi Q., Xie Y., Wang Y., Li S. Vitrification versus Slow Freezing for Human Ovarian Tissue Cryopreservation: A Systematic Review and Meta-Anlaysis. Sci. Rep. 2017;7:8538. doi: 10.1038/s41598-017-09005-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tokuda K., Ikemoto T., Saito Y., Miyazaki K., Yamashita S., Yamada S., Imura S., Morine Y., Shimada M. The Fragility of Cryopreserved Insulin-Producing Cells Differentiated from Adipose-Tissue-Derived Stem Cells. Cell Transpl. 2020;29 doi: 10.1177/0963689720954798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.O’Brien E., Esteso M.C., Castaño C., Toledano-Díaz A., Bóveda P., Martínez-Fresneda L., López-Sebastián A., Martínez-Nevado E., Guerra R., López Fernández M. Effectiveness of Ultra-Rapid Cryopreservation of Sperm from Endangered Species, Examined by Morphometric Means. Theriogenology. 2019;129:160–167. doi: 10.1016/j.theriogenology.2019.02.024. [DOI] [PubMed] [Google Scholar]
- 10.Kaczmarczyk A., Funnekotter B., Turner S.R., Bunn E., Bryant G., Hunt T.E., Mancera R.L. Development of Cryopreservation for Loxocarya Cinerea-an Endemic Australian Plant Species Important for Post-Mining Restoration. Cryo Lett. 2013;34:508–519. [PubMed] [Google Scholar]
- 11.Edesi J., Tolonen J., Ruotsalainen A.L., Aspi J., Häggman H. Cryopreservation Enables Long-Term Conservation of Critically Endangered Species Rubus Humulifolius. Biodivers. Conserv. 2020;29:303–314. doi: 10.1007/s10531-019-01883-9. [DOI] [Google Scholar]
- 12.Decelle J., Veronesi G., Gallet B., Stryhanyuk H., Benettoni P., Schmidt M., Tucoulou R., Passarelli M., Bohic S., Clode P., et al. Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol. 2020;30:173–188. doi: 10.1016/j.tcb.2019.12.007. [DOI] [PubMed] [Google Scholar]
- 13.Penninckx F., Poelmans S., Kerremans R., De Loecker W. Erythrocyte Swelling after Rapid Dilution of Cryoprotectants and Its Prevention. Cryobiology. 1984;21:25–32. doi: 10.1016/0011-2240(84)90019-1. [DOI] [PubMed] [Google Scholar]
- 14.Karlsson J.O.M., Cravalho E.G., Toner M. A Model of Diffusion-limited Ice Growth inside Biological Cells during Freezing. J. Appl. Phys. 1998;75:4442. doi: 10.1063/1.355959. [DOI] [Google Scholar]
- 15.Pan J., Shu Z., Zhao G., Ding W., Ren S., Sekar P.K., Peng J., Chen M., Gao D. Towards Uniform and Fast Rewarming for Cryopreservation with Electromagnetic Resonance Cavity: Numerical Simulation and Experimental Investigation. Appl. Therm. Eng. 2018;140:787–798. doi: 10.1016/j.applthermaleng.2018.05.015. [DOI] [Google Scholar]
- 16.Benson J. Ultra-Rapid Tissue Cryopreservation Method and Apparatus. 9,936,690 B2. U.S. Patent. 2018 November 20;
- 17.Wolfe J., Bryant G. Cellular Cryobiology: Thermodynamic Amd Mechanical Effects. Int. J. Refrig. 2001;24:438–450. doi: 10.1016/S0140-7007(00)00027-X. [DOI] [Google Scholar]
- 18.Gao D., Liu J., Liu C., McGann L., Watson P., Kleinhans F., Mazur P., Critser E., Critser J. Andrology: Prevention of Osmotic Injury to Human Spermatozoa during Addition and Removal of Glycerol. Hum. Reprod. 1995;10:1109–1122. doi: 10.1093/oxfordjournals.humrep.a136103. [DOI] [PubMed] [Google Scholar]
- 19.Sherman J.K. Synopsis of the Use of Frozen Human Semen since 1964: State of the Art of Human Semen Banking. Fertil. Steril. 1973;24:397–412. doi: 10.1016/S0015-0282(16)39678-9. [DOI] [PubMed] [Google Scholar]
- 20.Schneider U., Mazur P. Osmotic Consequences of Cryoprotectant Permeability and Its Relation to the Survival of Frozen-Thawed Embryos. Theriogenology. 1984;21:68–79. doi: 10.1016/0093-691X(84)90307-8. [DOI] [Google Scholar]
- 21.Mazur P., Schneider U. Osmotic Responses of Preimplantation Mouse and Bovine Embryos and Their Cryobiological Implications. Cell Biophys. 1986;8:259–285. doi: 10.1007/BF02788516. [DOI] [PubMed] [Google Scholar]
- 22.Leibo S.P. Genetic Engineering of Animals. Springer; Boston, MA, USA: 1986. Cryobiology: Preservation of Mammalian Embryos; pp. 251–272. [DOI] [PubMed] [Google Scholar]
- 23.Critser J., Huse-Benda A., Aaker D., Arneson B., Ball D. Cryopreservation of Human Spermatozoa. III. The Effect of Cryoprotectants on Motility. Fertil. Steril. 1988;50:314–320. doi: 10.1016/S0015-0282(16)60079-1. [DOI] [PubMed] [Google Scholar]
- 24.Wowk B. Thermodynamic Aspects of Vitrification. Cryobiology. 2010;60:11–22. doi: 10.1016/j.cryobiol.2009.05.007. [DOI] [PubMed] [Google Scholar]
- 25.Uhlmann D.R. A Kinetic Treatment of Glass Formation. J. Non-Cryst. Solids. 1972;7:337–348. doi: 10.1016/0022-3093(72)90269-4. [DOI] [Google Scholar]
- 26.Akiyama Y., Shinose M., Watanabe H. Cryoprotectant-Free Cryopreservation of Mammalian Cells by Superflash Freezing. Proc. Natl. Acad. Sci. USA. 2019;116:7738–7743. doi: 10.1073/pnas.1808645116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Huebinger J., Han H.M., Hofnagel O., Vetter I.R., Bastiaens P.I.H., Grabenbauer M. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization. Biophys. J. 2016;110:840–849. doi: 10.1016/j.bpj.2015.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Gilkey J.C., Staehelin L.A. Advances in Ultrarapid Freezing for the Preservation of Cellular Ultrastructure. J. Electron Microsc. Tech. 1986;3:177–210. doi: 10.1002/jemt.1060030206. [DOI] [Google Scholar]
- 29.Katkov I.I., Bolyukh V.F., Sukhikh G.T. KrioBlast TM as a New Technology of Hyper-Fast Cryopreservation of Cells and Tissues. Part, I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine. Bull. Exp. Biol. Med. 2018;164:530–535. doi: 10.1007/s10517-018-4027-8. [DOI] [PubMed] [Google Scholar]
- 30.Miyata K., Hayakawa S., Kajiwara K., Kanno H. Supercooling and Vitrification of Aqueous Glycerol Solutions at Normal and High Pressures. Cryobiology. 2012;65:113–116. doi: 10.1016/j.cryobiol.2012.05.002. [DOI] [PubMed] [Google Scholar]
- 31.Richter K. High-Density Morphologies of Ice in High-Pressure Frozen Biological Specimens. Ultramicroscopy. 1994;53:237–249. doi: 10.1016/0304-3991(94)90037-X. [DOI] [PubMed] [Google Scholar]
- 32.Preciado J., Rubinsky B. Isochoric Preservation: A Novel Characterization Method. Cryobiology. 2010;60:23–29. doi: 10.1016/j.cryobiol.2009.06.010. [DOI] [PubMed] [Google Scholar]
- 33.Ukpai G., Năstase G., Şerban A., Rubinsky B. Pressure in Isochoric Systems Containing Aqueous Solutions at Subzero Centigrade Temperatures. PLoS ONE. 2017;12:e0183353. doi: 10.1371/journal.pone.0183353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Brüggeller P., Mayer E. Complete Vitrification in Pure Liquid Water and Dilute Aqueous Solutions. nature. 1980;288:569–571. doi: 10.1038/288569a0. [DOI] [Google Scholar]
- 35.Grout B.W.W., Morris G.J. Contaminated Liquid Nitrogen Vapour as a Risk Factor in Pathogen Transfer. Theriogenology. 2009;71:1079–1082. doi: 10.1016/j.theriogenology.2008.12.011. [DOI] [PubMed] [Google Scholar]
- 36.Severs N.J., Newman T.M., Shotton D.M. A Practical Introduction to Rapid Freezing Techniques. In: Severs N., Shotton D., editors. Rapid Freezing, Freeze Fracture and Deep Etching. Wiley-Liss; New York, NY, USA: 1995. pp. 31–49. [Google Scholar]
- 37.Ickes L., Welti A., Hoose C., Chemical U.L. Classical Nucleation Theory of Homogeneous Freezing of Water: Thermodynamic and Kinetic Parameters. Phys. Chem. Chem. Phys. 2015;17:5514–5537. doi: 10.1039/C4CP04184D. [DOI] [PubMed] [Google Scholar]
- 38.Gibbs A., Willard J. On the Equilibrium of Heterogeneous Substances. Trans. Conn. Acad. Arts Sci. 1879;3:108–248. [Google Scholar]
- 39.Koop T., Murray B.J. A Physically Constrained Classical Description of the Homogeneous Nucleation of Ice in Water. J. Chem. Phys. 2016;145:211915. doi: 10.1063/1.4962355. [DOI] [PubMed] [Google Scholar]
- 40.Kauzmann W. The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 1948;43:219–256. doi: 10.1021/cr60135a002. [DOI] [Google Scholar]
- 41.Jung S., Tiwari M., Doan N., Poulikakos D. Mechanism of Supercooled Droplet Freezing on Surfaces. Nat. Commun. 2012;3:615. doi: 10.1038/ncomms1630. [DOI] [PubMed] [Google Scholar]
- 42.MacKenzie A.P. Non-Equilibrium Freezing Behaviour of Aqueous Systems. Philos. Trans. R. Soc. London. B Biol. Sci. 1977;278:167–189. doi: 10.1098/rstb.1977.0036. [DOI] [PubMed] [Google Scholar]
- 43.Rasmussen D.H. Ice Formation in Aqueous Systems. J. Microsc. 1982;128:167–174. doi: 10.1111/j.1365-2818.1982.tb00448.x. [DOI] [Google Scholar]
- 44.Clark G.L. Applied X-rays. 3rd ed. The McGraw-Hill Book Company, Inc.; New York, NY, USA: 1940. [Google Scholar]
- 45.Randall J.T. Diffraction of X-rays and Electrons by Amorphous Solids, Liquids and Gases. John Wiley and Sons, Inc.; New York, NY, USA: 1934. [Google Scholar]
- 46.Boutron P., Kaufmann A. Stability of the Amorphous State in the System Water-Glycerol-Dimethylsulfoxide. Cryobiology. 1978;15:93–108. doi: 10.1016/0011-2240(78)90012-3. [DOI] [PubMed] [Google Scholar]
- 47.Boutron P., Kaufmann A. Stability of the Amorphous State in the System Water—1,2-Propanediol. Cryobiology. 1979;16:557–568. doi: 10.1016/0011-2240(79)90074-9. [DOI] [PubMed] [Google Scholar]
- 48.Boutron P., Kaufmann A. Stability of the Amorphous State in the System Water-Glycerol-Ethylene Glycol. Cryobiology. 1979;16:83–89. doi: 10.1016/0011-2240(79)90015-4. [DOI] [PubMed] [Google Scholar]
- 49.Boutron P., Kaufmann A., Van Dang N. Maximum in the Stability of the Amorphous State in the System Water-Glycerol-Ethanol. Cryobiology. 1979;16:372–389. doi: 10.1016/0011-2240(79)90050-6. [DOI] [PubMed] [Google Scholar]
- 50.Baudot A., Alger L., Boutron P. Glass-Forming Tendency in the System Water-Dimethyl Sulfoxide. Cryobiology. 2000;40:151–158. doi: 10.1006/cryo.2000.2234. [DOI] [PubMed] [Google Scholar]
- 51.Baudot A., Cacela C., Duarte M., Cryobiology R.F. Thermal Study of Simple Amino-Alcohol Solutions. Cryobiology. 2002;44:150–160. doi: 10.1016/S0011-2240(02)00017-2. [DOI] [PubMed] [Google Scholar]
- 52.Baudot A., Cryobiology V.O. Thermal Properties of Ethylene Glycol Aqueous Solutions. Cryobiology. 2004;48:283–294. doi: 10.1016/j.cryobiol.2004.02.003. [DOI] [PubMed] [Google Scholar]
- 53.Wowk B., Darwin M., Harris S.B., Russell S.R., Rasch C.M. Effects of Solute Methoxylation on Glass-Forming Ability and Stability of Vitrification Solutions. Cryobiology. 1999;39:215–227. doi: 10.1006/cryo.1999.2203. [DOI] [PubMed] [Google Scholar]
- 54.Persidsky M.D. Cryopreservation under High Hydrostatic Pressure. Cryobiology. 1971;8:380. doi: 10.1016/0011-2240(71)90151-9. [DOI] [Google Scholar]
- 55.Dahl R., Staehelin L.A. Highpressure Freezing for the Preservation of Biological Structure: Theory and Practice. J. Electron Microsc. Tech. 1989;13:165–174. doi: 10.1002/jemt.1060130305. [DOI] [PubMed] [Google Scholar]
- 56.Erk I., Nicolas G., Caroff A., Lepault J. Electron Microscopy of Frozen Biological Objects: A Study Using Cryosectioning and Cryosubstitution. J. Microsc. 1998;189:236–248. doi: 10.1046/j.1365-2818.1998.00323.x. [DOI] [PubMed] [Google Scholar]
- 57.Ugraitskaya S.V., Shishova N.V., Valeeva E.R., Kaurova S.A., Shvirst N.E., Fesenko E.E. Cryopreservation of HeLa Cells at a High Hydrostatic Pressure of 1.0–1.5 Kbar. Biophys. (Russ. Fed.) 2021;66:98–106. doi: 10.1134/S0006350921010140. [DOI] [Google Scholar]
- 58.Greer N. Freezing under Pressure: A New Method for Cryopreservation. Cryobiology. 2015;70:66–70. doi: 10.1016/j.cryobiol.2014.12.005. [DOI] [PubMed] [Google Scholar]
- 59.Mickelson D.M., Attig J.W. Glacial Processes Past and Present. 1st ed. Special Paper; Madison, WI, USA: 1999. [Google Scholar]
- 60.Sartori N., Richter K., Dubochet J. Vitrification Depth Can Be Increased More than 10-fold by High-pressure Freezing. J. Microsc. 1993;172:55–61. doi: 10.1111/j.1365-2818.1993.tb03393.x. [DOI] [Google Scholar]
- 61.Wowk B., Fahy G. 21. Ice Nucleation and Growth in Concentrated Vitrification Solutions. Cryobiology. 2007;55:330. doi: 10.1016/j.cryobiol.2007.10.024. [DOI] [Google Scholar]
- 62.Hey J.M., Macfarlane D.R. Crystallization of Ice in Aqueous Solutions of Glycerol and Dimethyl Sulfoxide: 1. A Comparison of Mechanisms. Cryobiology. 1996;33:205–216. doi: 10.1006/cryo.1996.0021. [DOI] [PubMed] [Google Scholar]
- 63.MacKenzie A.P. Death of Yeast in the Course of Slow Warming. In: Wolstenholme C.A., O’Connor M., editors. The Frozen Cell. Churchill; London, UK: 1970. pp. 89–96. [Google Scholar]
- 64.Mazur P. The Role of Intracellular Freezing in the Death of Cells Cooled at Supraoptimal Rates. Cryobiology. 1977;14:251–272. doi: 10.1016/0011-2240(77)90175-4. [DOI] [PubMed] [Google Scholar]
- 65.Zieger M.A.J., Tredget E.E., McGann L.E. Mechanisms of Cryoinjury and Cryoprotection in Split-Thickness Skin. Cryobiology. 1996;33:376–389. doi: 10.1006/cryo.1996.0038. [DOI] [PubMed] [Google Scholar]
- 66.Acker J. Cell–Cell Contact Affects Membrane Integrity after Intracellular Freezing. Cryobiology. 2000;40:54–63. doi: 10.1006/cryo.1999.2221. [DOI] [PubMed] [Google Scholar]
- 67.Mazur P., Leibo S. A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-Culture Cells. Exp. Cell Res. 1972;71:345–355. doi: 10.1016/0014-4827(72)90303-5. [DOI] [PubMed] [Google Scholar]
- 68.De Graaf I.A.M., Koster H.J. Cryopreservation of Precision-Cut Tissue Slices for Application in Drug Metabolism Research. Toxicol. Vitr. 2003;17:1–17. doi: 10.1016/S0887-2333(02)00117-0. [DOI] [PubMed] [Google Scholar]
- 69.Amini M., Benson J.D. Investigation of Cryoprotectant Thermophysical Properties in the Fast Cooling Cryopreservation by DSC Technique. Cryobiology. 2022;109:34. doi: 10.1016/j.cryobiol.2022.11.110. [DOI] [Google Scholar]
- 70.Angell C.A. Supercooled Water. In: Franks F., editor. Water-A Comprehensive Treatise. Plenum Press; New York, NY, USA: 1982. pp. 1–81. [Google Scholar]
- 71.Bank H. Visualization of Freezing Damage. II. Structural Alterations during Warming. Cryobiology. 1973;10:157–170. doi: 10.1016/0011-2240(73)90023-0. [DOI] [PubMed] [Google Scholar]
- 72.Rall W.F., Reid D.S., Polge C. Analysis of Slow-Warming Injury of Mouse Embryos by Cryomicroscopical and Physiochemical Methods. Cryobiology. 1984;21:106–121. doi: 10.1016/0011-2240(84)90027-0. [DOI] [PubMed] [Google Scholar]
- 73.Nei T. Growth of Ice Crystals in Frozen Specimens. J. Microsc. 1973;99:227–233. doi: 10.1111/j.1365-2818.1973.tb04675.x. [DOI] [Google Scholar]
- 74.Mazur P. Freezing of Living Cells: Mechanisms and Implications. Am. J. Physiol.-Cell Physiol. 1984;247:C125–C142. doi: 10.1152/ajpcell.1984.247.3.C125. [DOI] [PubMed] [Google Scholar]
- 75.Li A.P., Gorycki P.D., Hengstler J.G., Kedderis G.L., Koebe H.G., Rahmani R., De Sousas G., Silva J.M., Skett P. Present Status of the Application of Cryopreserved Hepatocytes in the Evaluation of Xenobiotics: Consensus of an International Expert Panel. Chem.-Biol. Interact. 1999;121:117–123. doi: 10.1016/S0009-2797(99)00081-2. [DOI] [PubMed] [Google Scholar]
- 76.Rijntjes P.J.M., Moshage H.J., Van Gemert P.J.L., De Waal R., Yap S.H. Cryopreservation of Adult Human Hepatocytes. J. Hepatol. 1986;3:7–18. doi: 10.1016/S0168-8278(86)80140-4. [DOI] [PubMed] [Google Scholar]
- 77.De Sousa G., Langouët S., Nicolas F., Lorenzon G., Placidi M., Rahmani R., Guillouzo A. Increase of Cytochrome P-450 1A and Glutathione Transferase Transcripts in Cultured Hepatocytes from Dogs, Monkeys, and Humans after Cryopreservation. Cell Biol. Toxicol. 1996;12:351–358. doi: 10.1007/BF00438170. [DOI] [PubMed] [Google Scholar]
- 78.Ostrowska A., Bode C.D., Pruss J., Bilir B., Smith G.D., Zeisloft S. Investigation of Functional and Morphological Integrity of Freshly Isolated and Cryopreserved Human Hepatocytes. Cell Tissue Bank. 2000;1:55–68. doi: 10.1023/A:1010175906791. [DOI] [PubMed] [Google Scholar]
- 79.Luyet B. The Vitrification of Organic Colloids and of Protoplasme. Biodynamica; Whitefish, MT, USA: 1937. [Google Scholar]
- 80.Bunge R.G., Sherman J.K. Fertilizing Capacity of Frozen Human Spermatozoa. Nature. 1953;172:767–768. doi: 10.1038/172767b0. [DOI] [PubMed] [Google Scholar]
- 81.Wishnies S.M., Parrish A.R., Sipes I.G., Gandolfi A.J., Putnam C.W., Krumdieck C.L., Brendel K. Biotransformation Activity in Vitrified Human Liver Slices. Cryobiology. 1991;28:216–226. doi: 10.1016/0011-2240(91)90026-K. [DOI] [PubMed] [Google Scholar]
- 82.De Kanter R., Koster H.J. Cryopreservation of Rat and Monkey Liver Slices. Altern. Lab. Anim. 1995;23:653–665. doi: 10.1177/026119299502300519. [DOI] [Google Scholar]
- 83.De Kanter R., Olinga P., De Jager M.H., Merema M.T., Meijer D.K.F., Groothius G.M.M. Organ Slices as an in Vitro Test System for Drug Metabolism in Human Liver, Lung and Kidney. Toxicol. Vitr. 1999;13:737–744. doi: 10.1016/S0887-2333(99)00047-8. [DOI] [PubMed] [Google Scholar]
- 84.de Graaf I.A.M., van der Voort D., Brits J.H.F.G., Koster H.J. Increased Post-Thaw Viability and Phase I and II Biotransformation Activity in Cryopreserved Rat Liver Slices after Improvement of a Fast-Freezing Method. Drug Metab. Dispos. 2000;28:1100–1106. [PubMed] [Google Scholar]
- 85.Day S.H., Nicoll-Griffith D.A., Silva J.M. Cryopreservation of Rat and Human Liver Slices by Rapid Freezing. Cryobiology. 1999;38:154–159. doi: 10.1006/cryo.1999.2161. [DOI] [PubMed] [Google Scholar]
- 86.Powis G., Santone K.S., Melder D.C., Thomas L., Moore D.J., Wilke T.J. Cryopreservation of Rat and Dog Hepatocytes for Studies of Xenobiotic Metabolism and Activation. Drug Metab. Dispos. 1987;15:826–832. [PubMed] [Google Scholar]
- 87.Coundouris J.A., Grant M.H., Simpson J.G., Hawksworth G.M. Drug Metabolism and Viability Studies in Cryopreserved Rat Hepatocytes. Cryobiology. 1990;27:288–300. doi: 10.1016/0011-2240(90)90028-3. [DOI] [PubMed] [Google Scholar]
- 88.Diener B., Utesch D., Beer N., Dürk H., Oesch F. A Method for the Cryopreservation of Liver Parenchymal Cells for Studies of Xenobiotics. Cryobiology. 1993;30:116–127. doi: 10.1006/cryo.1993.1011. [DOI] [PubMed] [Google Scholar]
- 89.Maas W.J.M., De Graaf I.A.M., Schoen E.D., Koster H.J., Van De Sandt J.J.M., Groten J.P. Assessment of Some Critical Factors in the Freezing Technique for the Cryopreservation of Precision-Cut Rat Liver Slices. Cryobiology. 2000;40:250–263. doi: 10.1006/cryo.2000.2246. [DOI] [PubMed] [Google Scholar]
- 90.Pegg D.E. The Biophysics of Organ Cryopreservation. Springer; Boston, MA, USA: 1987. Ice Crystals in Tissues and Organs. [DOI] [Google Scholar]
- 91.Bischof J.C., Ryan C.M., Tompkins R.G., Yarmush M.L., Toner M. Ice Formation in Isolated Human Hepatocytes and Human Liver Tissue. Asaio, J. 1997;43:271–278. doi: 10.1097/00002480-199743040-00003. [DOI] [PubMed] [Google Scholar]
- 92.Rapatz G., Luyet B. Microscopic Observations on the Development of the Ice Phase in the Freezing of Blood. Biodynamica. 1960;8:195–239. [PubMed] [Google Scholar]
- 93.Takahashi T., Hirsh A. Calorimetric Studies of the State of Water in Deeply Frozen Human Monocytes. Biophys. J. 1985;47:373–380. doi: 10.1016/S0006-3495(85)83928-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Yamane H., Ohshima H., Kondod T. Freezing Behaviour of Microencapsulated Water. J. Microencapsul. 1992;9:279–286. doi: 10.3109/02652049209021243. [DOI] [PubMed] [Google Scholar]
- 95.Peyridieu J.F., Baudot A., Boutron P., Mazuer J., Odin J., Ray A., Chapelier E., Payen E., Descotes J.L. Critical Cooling and Warming Rates to Avoid Ice Crystallization in Small Pieces of Mammalian Organs Permeated with Cryoprotective Agents. Cryobiology. 1996;33:436–446. doi: 10.1006/cryo.1996.0044. [DOI] [PubMed] [Google Scholar]
- 96.Kliesch S., Kamischke A., Cooper T.G., Nieschlag E. Andrology: Male Reproductive Health and Dysfunction. Volume 12. Springer; Berlin/Heidelberg, Germany: 2010. Cryopreservation of Human Spermatozoa; pp. 505–520. [DOI] [Google Scholar]
- 97.Endo Y., Fujii Y., Shintani K., Seo M., Motoyama H., Funahashi H. Simple Vitrification for Small Numbers of Human Spermatozoa. Reprod. Biomed. Online. 2012;24:301–307. doi: 10.1016/j.rbmo.2011.11.016. [DOI] [PubMed] [Google Scholar]
- 98.Herrler A., Eisner S., Bach V., Weissenborn U., Beier H.M. Cryopreservation of Spermatozoa in Alginic Acid Capsules. Fertil. Steril. 2006;85:208–213. doi: 10.1016/j.fertnstert.2005.06.049. [DOI] [PubMed] [Google Scholar]
- 99.Shufaro Y., Stein A., Shufaro Y., Hadar S., Fisch B., Pinkas H. Successful Use of the Cryolock Device for Cryopreservation of Scarce Human Ejaculate and Testicular Spermatozoa. Wiley Online Libr. 2015;3:220–224. doi: 10.1111/andr.12007. [DOI] [PubMed] [Google Scholar]
- 100.Liu F., Zou S.S., Zhu Y., Sun C., Liu Y.F., Wang S.S., Shi W.B., Zhu J.J., Huang Y.H., Li Z. A Novel Micro-Straw for Cryopreservation of Small Number of Human Spermatozoon. Asian J. Androl. 2016;19:326–329. doi: 10.4103/1008-682X.173452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Berkovitz A., Miller N., Silberman M., Belenky M., Itsykson P. A Novel Solution for Freezing Small Numbers of Spermatozoa Using a Sperm Vitrification Device. Hum. Reprod. 2018;33:1975–1983. doi: 10.1093/humrep/dey304. [DOI] [PubMed] [Google Scholar]
- 102.Paffoni A., Palini S. There Is Another New Method for Cryopreserving Small Numbers of Human Sperm Cells. Ann. Transl. Med. 2019;7:S17. doi: 10.21037/atm.2019.01.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Feng H., Xu Y., Yang T. Study on Leidenfrost Effect of Cryoprotectant Droplets on Liquid Nitrogen with IR Imaging Technology and Non-Isothermal Crystallization Kinetics Model. Int. J. Heat Mass Transf. 2018;127:413–421. doi: 10.1016/j.ijheatmasstransfer.2018.08.001. [DOI] [Google Scholar]
- 104.XU Y., WANG T., DENG X., YANG T., WANG C., CAO J., FANG L. Analysis on the Leidenfrost Effect of Cryoprotectant Microdroplets on the Liquid Nitrogen Surface. Sci. Sin. Technol. 2017;47:190–196. doi: 10.1360/N092016-00149. [DOI] [Google Scholar]
- 105.Isachenko V., Isachenko E., Katkov I.I., Montag M., Dessole S., Nawroth F., Van Der Ven H. Cryoprotectant-Free Cryopreservation of Human Spermatozoa by Vitrification and Freezing in Vapor: Effect on Motility, DNA Integrity, and Fertilization Ability. Biol. Reprod. 2004;71:1167–1173. doi: 10.1095/biolreprod.104.028811. [DOI] [PubMed] [Google Scholar]
- 106.Bielanski A. A Review of the Risk of Contamination of Semen and Embryos during Cryopreservation and Measures to Limit Cross-Contamination during Banking to Prevent Disease Transmission in ET Practices. Theriogenology. 2012;77:467–482. doi: 10.1016/j.theriogenology.2011.07.043. [DOI] [PubMed] [Google Scholar]
- 107.HARRISON A.P. Survival of Bacteria upon Repeated Freezing and Thawing. J. Bacteriol. 1955;70:711–715. doi: 10.1128/jb.70.6.711-715.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Piasecka-Serafin M. The Effect of the Sediment Accumulated in Containers under Experimental Conditions on the Infection of Semen Stored Directly in Liquid Nitrogen (-196 Degree C) Bull. De L”Acad. Pol. Des Sciences. Ser. Des Sci. Biol. 1972;20:263–267. [PubMed] [Google Scholar]
- 109.Schafer T., Everett J., Silver G., Came P.E. Biohazard: Virus-Contaminated Liquid Nitrogen. Science. 1976;191:24–26. doi: 10.1126/science.191.4222.24.d. [DOI] [PubMed] [Google Scholar]
- 110.Tedder R.S., Zuckerman M.A., Brink N.S., Goldstone A.H., Fielding A., Blair S., Patterson K.G., Hawkins A.E., Gormon A.M., Heptonstall J. Hepatitis B Transmission from Contaminated Cryopreservation Tank. Lancet. 1995;346:137–140. doi: 10.1016/S0140-6736(95)91207-X. [DOI] [PubMed] [Google Scholar]
- 111.Cobo A., Bellver J., De Los Santos M.J., Remohí J. Viral Screening of Spent Culture Media and Liquid Nitrogen Samples of Oocytes and Embryos from Hepatitis B, Hepatitis C, and Human Immunodeficiency Virus Chronically Infected Women Undergoing in Vitro Fertilization Cycles. Fertil. Steril. 2012;97:74–78. doi: 10.1016/j.fertnstert.2011.10.006. [DOI] [PubMed] [Google Scholar]
- 112.Molina I., Mari M., Martínez J.V., Novella-Maestre E., Pellicer N., Pemán J. Bacterial and Fungal Contamination Risks in Human Oocyte and Embryo Cryopreservation: Open versus Closed Vitrification Systems. Fertil. Steril. 2016;106:127–132. doi: 10.1016/j.fertnstert.2016.03.024. [DOI] [PubMed] [Google Scholar]
- 113.Deen G.F., Broutet N., Xu W., Knust B., Sesay F.R., McDonald S.L.R., Ervin E., Marrinan J.E., Gaillard P., Habib N. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors—Final Report. N. Engl. J. Med. 2017;377:1428–1437. doi: 10.1056/NEJMoa1511410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Nicastri E., Castilletti C., Liuzzi G., Iannetta M., Capobianchi M.R., Ippolito G. Persistent Detection of Zika Virus RNA in Semen for Six Months after Symptom Onset in a Traveller Returning from Haiti to Italy, February 2016. Eurosurveillance. 2016;21:30314. doi: 10.2807/1560-7917.ES.2016.21.32.30314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Bielanski A. Biosafety in Embryos and Semen Cryopreservation, Storage, Management and Transport. Springer; New York, NY, USA: 2014. pp. 429–465. [DOI] [PubMed] [Google Scholar]
- 116.Bielanski A., Nadin-Davis S., Sapp T., Lutze-Wallace C. Viral Contamination of Embryos Cryopreserved in Liquid Nitrogen. Cryobiology. 2000;40:110–116. doi: 10.1006/cryo.1999.2227. [DOI] [PubMed] [Google Scholar]
- 117.Morris G.J. The Origin, Ultrastructure, and Microbiology of the Sediment Accumulating in Liquid Nitrogen Storage Vessels. Cryobiology. 2005;50:231–238. doi: 10.1016/j.cryobiol.2005.01.005. [DOI] [PubMed] [Google Scholar]
- 118.Joaquim D.C., Borges E.D., Viana I.G.R., Navarro P.A., Vireque A.A. Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination. BioMed Res. Int. 2017;2017:1840417. doi: 10.1155/2017/1840417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.dos Santos Neto P.C., Vilariño M., Barrera N., Cuadro F., Crispo M., Menchaca A. Cryotolerance of Day 2 or Day 6 in Vitro Produced Ovine Embryos after Vitrification by Cryotop or Spatula Methods. Cryobiology. 2015;70:17–22. doi: 10.1016/j.cryobiol.2014.11.001. [DOI] [PubMed] [Google Scholar]
- 120.Oliveira C.S., Feuchard V.L.d.S., de Freitas C., Rosa P.M.d.S., Camargo A.J.d.R., Saraiva N.Z. In-Straw Warming Protocol Improves Survival of Vitrified Embryos and Allows Direct Transfer in Cattle. Cryobiology. 2020;97:222–225. doi: 10.1016/j.cryobiol.2020.02.007. [DOI] [PubMed] [Google Scholar]
- 121.Bottrel M., Mogas T., Pereira B., Ortiz I., Díaz-Jiménez M., Consuegra C., Hidalgo M., Morató R., Dorado J. The Cryoprotective Effect of Ficoll 70 on the Post-Warming Survival and Quality of Cryotop-Vitrified Donkey Embryos: Vitrifying Donkey Embryos with Ficoll. Theriogenology. 2020;148:180–185. doi: 10.1016/j.theriogenology.2019.11.013. [DOI] [PubMed] [Google Scholar]
- 122.Somfai T., Hirao Y. Vitrification of Immature Bovine Oocytes in Protein-Free Media: The Impact of the Cryoprotectant Treatment Protocol, Base Medium, and Ovary Storage. Theriogenology. 2021;172:47–54. doi: 10.1016/j.theriogenology.2021.05.029. [DOI] [PubMed] [Google Scholar]
- 123.Seki S., Basaki K., Komatsu Y., Fukuda Y., Yano M., Matsuo Y., Obata T., Matsuda Y., Nishijima K. Vitrification of One-Cell Mouse Embryos in Cryotubes. Cryobiology. 2018;81:132–137. doi: 10.1016/j.cryobiol.2018.01.013. [DOI] [PubMed] [Google Scholar]
- 124.Amorim C.A., David A., Van Langendonckt A., Dolmans M.M., Donnez J. Vitrification of Human Ovarian Tissue: Effect of Different Solutions and Procedures. Fertil. Steril. 2011;95:1094–1097. doi: 10.1016/j.fertnstert.2010.11.046. [DOI] [PubMed] [Google Scholar]
- 125.El-Sharawy M.E., Almadaly E.A., El-Domany W.B., Essawy M.M., Shamiah S.M., El-Shamaa I.S., Zaghloul H.K. Ultrastructural Changes in Immature Ovine Cumulus-Oocyte Complexes Vitrified in Conventional and Open Pulled Straws. Small Rumin. Res. 2021;199:106367. doi: 10.1016/j.smallrumres.2021.106367. [DOI] [Google Scholar]
- 126.Kornienko E.V., Romanova A.B., Ikonopistseva M.V., Malenko G.P. Optimization of Triacetate Cellulose Hollow Fiber Vitrification (HFV) Method for Cryopreservation of in Vitro Matured Bovine Oocytes. Cryobiology. 2020;97:66–70. doi: 10.1016/j.cryobiol.2020.10.007. [DOI] [PubMed] [Google Scholar]
- 127.Sugiyama R., Nakagawa K., Shirai A., Sugiyama R., Nishi Y., Kuribayashi Y., Inoue M. Clinical Outcomes Resulting from the Transfer of Vitrified Human Embryos Using a New Device for Cryopreservation (Plastic Blade) J. Assist. Reprod. Genet. 2010;27:161–167. doi: 10.1007/s10815-010-9390-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Nakayama K., Chinen S., Teshima J., Tamada Y., Hirabayashi M., Hochi S. Silk Fibroin Sheet Multilayer Suitable for Vitrification of in Vitro-Matured Bovine Oocytes. Theriogenology. 2020;145:109–114. doi: 10.1016/j.theriogenology.2020.01.052. [DOI] [PubMed] [Google Scholar]
- 129.Hayashi A., Maehara M., Uchikura A., Matsunari H., Matsumura K., Hyon S.H., Sato M., Nagashima H. Development of an Efficient Vitrification Method for Chondrocyte Sheets for Clinical Application. Regen. Ther. 2020;14:215–221. doi: 10.1016/j.reth.2020.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Xiao Z., Wang Y., Li L., Luo S., Li S.W. Needle Immersed Vitrification Can Lower the Concentration of Cryoprotectant in Human Ovarian Tissue Cryopreservation. Fertil. Steril. 2010;94:2323–2328. doi: 10.1016/j.fertnstert.2010.01.011. [DOI] [PubMed] [Google Scholar]
- 131.Zhou X.H., Wu Y.J., Shi J., Xia Y., Zheng S. Sen. Cryopreservation of Human Ovarian Tissue: Comparison of Novel Direct Cover Vitrification and Conventional Vitrification. Cryobiology. 2010;60:101–105. doi: 10.1016/j.cryobiol.2009.02.006. [DOI] [PubMed] [Google Scholar]
- 132.Bebbere D., Pinna S., Nieddu S., Natan D., Arav A., Ledda S. Gene Expression Analysis of Ovine Prepubertal Testicular Tissue Vitrified with a Novel Cryodevice (E.Vit) J. Assist. Reprod. Genet. 2019;36:2145–2154. doi: 10.1007/s10815-019-01559-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Rahimi G., Isachenko V., Kreienberg R., Sauer H., Todorov P., Tawadros S., Mallmann P., Nawroth F., Isachenko E. Re-Vascularisation in Human Ovarian Tissue after Conventional Freezing or Vitrification and Xenotransplantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010;149:63–67. doi: 10.1016/j.ejogrb.2009.11.015. [DOI] [PubMed] [Google Scholar]
- 134.Lima D.B.C., Da Silva L.D.M., Comizzoli P. Influence of Warming and Reanimation Conditions on Seminiferous Tubule Morphology, Mitochondrial Activity, and Cell Composition of Vitrified Testicular Tissues in the Domestic Cat Model. PLoS ONE. 2018;13:e0207317. doi: 10.1371/journal.pone.0207317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Ramezani M., Salehnia M., Jafarabadi M. Vitrification and in Vitro Culture Had No Adverse Effect on the Follicular Development and Gene Expression of Stimulated Human Ovarian Tissue. J. Obstet. Gynaecol. Res. 2018;44:474–487. doi: 10.1111/jog.13530. [DOI] [PubMed] [Google Scholar]
- 136.Yamini N., Pourmand G., Amidi F., Salehnia M., Nejad N.A., Mougahi S.M.H.N. Developmental Potential of Vitrified Mouse Testicular Tissue after Ectopic Transplantation. Cell J. 2016;18:74–82. doi: 10.1016/j.juro.2017.02.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Fujihara M., Kaneko T., Inoue-Murayama M. Vitrification of Canine Ovarian Tissues with Polyvinylpyrrolidone Preserves the Survival and Developmental Capacity of Primordial Follicles. Sci. Rep. 2019;9:3970. doi: 10.1038/s41598-019-40711-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Benvenutti L., Salvador R.A., Til D., Senn A.P., Tames D.R., Amaral N.L.L., Amaral V.L.L. Wistar Rats Immature Testicular Tissue Vitrification and Heterotopigrafting. J. Bras. De Reprod. Assist. 2018;22:167–173. doi: 10.5935/1518-0557.20180023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Xu H., Shi H., Zang W.-F., Lu D. An Experimental Research on Cryopreserving Rabbit Trachea by Vitrification. Cryobiology. 2009;58:225–231. doi: 10.1016/j.cryobiol.2008.12.009. [DOI] [PubMed] [Google Scholar]
- 140.de Graaf I.A.M., Draaisma A.L., Schoeman O., Fahy G.M., Groothuis G.M.M., Koster H.J. Cryopreservation of Rat Precision-Cut Liver and Kidney Slices by Rapid Freezing and Vitrification. Cryobiology. 2007;54:1–12. doi: 10.1016/j.cryobiol.2006.09.002. [DOI] [PubMed] [Google Scholar]
- 141.Jomha N.M., Elliott J.A.W., Law G.K., Maghdoori B., Fraser Forbes J., Abazari A., Adesida A.B., Laouar L., Zhou X., McGann L.E. Vitrification of Intact Human Articular Cartilage. Biomaterials. 2012;33:6061–6068. doi: 10.1016/j.biomaterials.2012.05.007. [DOI] [PubMed] [Google Scholar]
- 142.Wu K., Shardt N., Laouar L., Chen Z., Prasad V., Elliott J.A.W., Jomha N.M. Comparison of Three Multi-Cryoprotectant Loading Protocols for Vitrification of Porcine Articular Cartilage. Cryobiology. 2020;92:151–160. doi: 10.1016/j.cryobiol.2020.01.001. [DOI] [PubMed] [Google Scholar]
- 143.Aertsen A., Meersman F., Hendrickx M.E.G., Vogel R.F., Michiels C.W. Biotechnology under High Pressure: Applications and Implications. Trends Biotechnol. 2009;27:434–441. doi: 10.1016/j.tibtech.2009.04.001. [DOI] [PubMed] [Google Scholar]
- 144.De Heer J. The Principle of Le Châtelier and Braun. J. Chem. Educ. 1957;34:375–380. doi: 10.1021/ed034p375. [DOI] [Google Scholar]
- 145.Meersman F., Dobson C.M., Heremans K. Protein Unfolding, Amyloid Fibril Formation and Configurational Energy Landscapes under High Pressure Conditions. Chem. Soc. Rev. 2006;35:908–917. doi: 10.1039/b517761h. [DOI] [PubMed] [Google Scholar]
- 146.Silva J.L., Foguel D., Royer C.A. Pressure Provides New Insights into Protein Folding, Dynamics and Structure. Trends Biochem. Sci. 2001;26:612–618. doi: 10.1016/S0968-0004(01)01949-1. [DOI] [PubMed] [Google Scholar]
- 147.Shung K.K., Krisko B.A., Ballard J.O. Acoustic Measurement of Erythrocyte Compressibility. J. Acoust. Soc. Am. 1982;72:1364–1367. doi: 10.1121/1.388439. [DOI] [PubMed] [Google Scholar]
- 148.Hall A.C., Pickles D.M., Macdonald A.G. Advances in Comparative and Enviromental Physiology. In: Macdonald A.G., editor. Advances in Comparative and Enviromental Physiology. Springer; Berlin, Germany: 1993. p. 17. [Google Scholar]
- 149.Lammi M.J., Hakkinen T.P., Parkkinen J.J., Hyttinen M.M., Jortikka M., Helminen H.J., Tammi M.I. Adaptation of Canine Femoral Head Articular Cartilage to Long Distance Running Exercise in Young Beagles. Ann. Rheum. Dis. 1993;52:369–377. doi: 10.1136/ard.52.5.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Marsland D. Cells at High Pressure. Sci. Am. 1958;199:36–43. doi: 10.1038/scientificamerican1058-36. [DOI] [PubMed] [Google Scholar]
- 151.Zimmerman A.M., Marsland D. Cell Division: Effects of Pressure on the Mitotic Mechanisms of Marine Eggs (Arbacia Punctulata) Exp. Cell Res. 1964;35:293–302. doi: 10.1016/0014-4827(64)90096-5. [DOI] [PubMed] [Google Scholar]
- 152.Forer A., Zimmerman A.M. Spindle Birefringence of Isolated Mitotic Apparatus Analysed by Treatments with Cold, Pressure, and Diluted Isolation Medium. J. Cell Sci. 1976;20:329–339. doi: 10.1242/jcs.20.2.329. [DOI] [PubMed] [Google Scholar]
- 153.Bourns B., Franklin S., Cassimeris L., Salmon E.D. High Hydrostatic Pressure Effects in Vivo: Changes in Cell Morphology, Microtubule Assembly, and Actin Organization. Cell Motil. Cytoskelet. 1988;10:380–390. doi: 10.1002/cm.970100305. [DOI] [PubMed] [Google Scholar]
- 154.Symington A.L., Zimmerman S., Stein J., Stein G., Zimmerman A.M. Hydrostatic Pressure Influences Histone MRNA. J. Cell Sci. 1991;98:123–129. doi: 10.1242/jcs.98.1.123. [DOI] [PubMed] [Google Scholar]
- 155.Haskin C., Cameron I. Physiological Levels of Hydrostatic Pressure Alter Morphology and Organization of Cytoskeletal and Adhesion Proteins in MG-63 Osteosarcoma Cells. Biochem. Cell Biol. Biochim. Et Biol. Cell. 1993;71:27–35. doi: 10.1139/o93-005. [DOI] [PubMed] [Google Scholar]
- 156.Haskin C.L., Athanasiou K.A., Klebe R., Cameron I.L. A Heat-Shock-like Response with Cytoskeletal Disruption Occurs Following Hydrostatic Pressure in MG-63 Osteosarcoma Cells. Biochem. Cell Biol. 1993;71:361–371. doi: 10.1139/o93-054. [DOI] [PubMed] [Google Scholar]
- 157.Wilson R.G., Trogadis J.E., Zimmerman S., Zimmerman A.M. Hydrostatic Pressure Induced Changes in the Cytoarchitecture of Pheochromocytoma (PC-12) Cells. Cell Biol. Int. 2001;25:649–666. doi: 10.1006/cbir.2000.0692. [DOI] [PubMed] [Google Scholar]
- 158.Wilson R.G., Zimmerman S., Zimmerman A.M. The Effects of Hydrostatic Pressure-Induced Changes on the Cytoskeleton and on the Regulation of Gene Expression in Pheochromocytoma (PC-12) Cells. Cell Biol. Int. 2001;25:667–677. doi: 10.1006/cbir.2000.0691. [DOI] [PubMed] [Google Scholar]
- 159.Karow A.M., Liu W.P., Humphries A.L. Survival of Dog Kidneys Subjected to High Pressures: Necrosis of Kidneys after Freezing. Cryobiology. 1970;7:122–128. doi: 10.1016/0011-2240(70)90007-6. [DOI] [PubMed] [Google Scholar]
- 160.Fahy G.M. The Biophysics of Organ Cryopreservation. In: Peggy D.E., Karow A., editors. The Biophysics of Organ Cryopreservation. Plenum; New York, NY, USA: 1987. p. 339. [Google Scholar]
- 161.Frey B., Janko C., Ebel N., Meister S., Schlucker E., Meyer-Pittroff R., Fietkau R., Herrmann M., Gaipl U. Cells Under Pressure—Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death. Curr. Med. Chem. 2008;15:2329–2336. doi: 10.2174/092986708785909166. [DOI] [PubMed] [Google Scholar]
- 162.Multhoff G. Heat Shock Protein 70 (Hsp70): Membrane Location, Export and Immunological Relevance. Methods. 2007;43:229–237. doi: 10.1016/j.ymeth.2007.06.006. [DOI] [PubMed] [Google Scholar]
- 163.Kaarniranta K., Elo M., Sironen R., Lammi M.J., Goldring M.B., Eriksson J.E., Sistonen L., Helminen H.J. Hsp70 Accumulation in Chondrocytic Cells Exposed to High Continuous Hydrostatic Pressure Coincides with MRNA Stabilization Rather than Transcriptional Activation. Proc. Natl. Acad. Sci. USA. 2002;95:2319–2324. doi: 10.1073/pnas.95.5.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Kaarniranta K., Elo M.A., Sironen R.K., Karjalainen H.M., Helminen H.J., Lammi M.J. Stress Responses of Mammalian Cells to High Hydrostatic Pressure. Biorheology. 2002;40:87–92. [PubMed] [Google Scholar]
- 165.Kaarniranta K., Holmberg C.I., Lammi M.J., Eriksson J.E., Sistonen L., Helminen H.J. Primary Chondrocytes Resist Hydrostatic Pressure-Induced Stress While Primary Synovial Cells and Fibroblasts Show Modified Hsp70 Response. Osteoarthr. Cartil. 2001;9:7–13. doi: 10.1053/joca.2000.0354. [DOI] [PubMed] [Google Scholar]
- 166.Islam N., Haqqi T.M., Jepsen K.J., Kraay M., Welter J.F., Goldberg V.M., Malemud C.J. Hydrostatic Pressure Induces Apoptosis in Human Chondrocytes from Osteoarthritic Cartilage through Up-Regulation of Tumor Necrosis Factor-α, Inducible Nitric Oxide Synthase, P53, c-Myc, and Bax-α, and Suppression of Bcl-2. J. Cell. Biochem. 2000;87:266–278. doi: 10.1002/jcb.10317. [DOI] [PubMed] [Google Scholar]
- 167.Boonyaratanakornkit B.B., Park C.B., Clark D.S. Pressure Effects on Intra- and Intermolecular Interactions within Proteins. Biochim. Et Biophys. Acta-Protein Struct. Mol. Enzymol. 2002;1595:235–249. doi: 10.1016/S0167-4838(01)00347-8. [DOI] [PubMed] [Google Scholar]
- 168.Heremans K. High Pressure Effects on Proteins and Other Biomolecules. Annu. Rev. Biophys. Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
- 169.Heremans K., Smeller L. Protein Structure and Dynamics at High Pressure1. Biochim. Et Biophys. Acta-Protein Struct. Mol. Enzymol. 1998;1386:353–370. doi: 10.1016/S0167-4838(98)00102-2. [DOI] [PubMed] [Google Scholar]
- 170.Winter R., Dzwolak W., Wolynes P.G., Dobson C.M., Saykally R.J. Exploring the Temperature-Pressure Configurational Landscape of Biomolecules: From Lipid Membranes to Proteins. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005;363:537–563. doi: 10.1098/rsta.2004.1507. [DOI] [PubMed] [Google Scholar]
- 171.Meersman F., Smeller L., Heremans K. Protein Stability and Dynamics in the Pressure-Temperature Plane. Biochim. Et Biophys. Acta-Proteins Proteom. 2006;1764:346–354. doi: 10.1016/j.bbapap.2005.11.019. [DOI] [PubMed] [Google Scholar]
- 172.Winter R., Dzwolak W. Temperature-Pressure Configurational Landscape of Lipid Bilayers and Proteins. Cell. Mol. Biol. 2004;50:397–417. [PubMed] [Google Scholar]
- 173.Balny C., Hayashi R. High Pressure Bioscience and Biotechnology. 1st ed. Elsevier Science B.V.; Amsterdam, The Netherlands: 1996. [Google Scholar]
- 174.Balny C. In: Advances in High Pressure Bioscience and Biotechnology. Ludwig H., editor. Springer; Berlin, Germany: 1999. [Google Scholar]
- 175.Balny C., Masson P., Heremans K. High Pressure Effects on Biological Macromolecules: From Structural Changes to Alteration of Cellular Processes. Biochim. Et Biophys. Acta. 2002;1595:3–10. doi: 10.1016/S0167-4838(01)00331-4. [DOI] [PubMed] [Google Scholar]
- 176.Smeller L., Meersman F., Heremans K. Refolding Studies Using Pressure: The Folding Landscape of Lysozyme in the Pressure–Temperature Plane. Biochim. Et Biophys. Acta (Bba)-Proteins Proteom. 2006;1764:497–505. doi: 10.1016/j.bbapap.2006.01.016. [DOI] [PubMed] [Google Scholar]
- 177.Winter R. Synchrotron X-Ray and Neutron Small-Angle Scattering of Lyotropic Lipid Mesophases, Model Biomembranes and Proteins in Solution at High Pressure. Biochim. Et Biophys. Acta (Bba)-Protein Struct. Mol. Enzymol. 2002;1595:160–184. doi: 10.1016/S0167-4838(01)00342-9. [DOI] [PubMed] [Google Scholar]
- 178.Smeller L. The Pressure Dependence of the Lipid Phase Transitions. Effect of the Pressure on the Pre-and Subtransition. J. Theor. Biol. 1990;142:453–462. doi: 10.1016/S0022-5193(05)80101-8. [DOI] [PubMed] [Google Scholar]
- 179.Take J., Yamaguchi T., Mine N., Terada S. Caspase Activation in High-Pressure. Induced Apoptosis of Murine Erythroleukemia Cells. Jpn. J. Physiol. 2005;51:193–199. doi: 10.2170/jjphysiol.51.193. [DOI] [PubMed] [Google Scholar]
- 180.Yamaguchi T., Hashiguchi K., Katsuki S., Iwamoto W., Tsuruhara S., Terada S. Activation of the Intrinsic and Extrinsic Pathways in High Pressure-Induced Apoptosis of Murine Erythroleukemia Cells. Cell. Mol. Biol. Lett. 2008;13:49–57. doi: 10.2478/s11658-007-0034-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Diehl P., Schmitt M., Blümelhuber G., Frey B., Van Laak S., Fischer S., Muehlenweg B., Meyer-Pittroff R., Gollwitzer H., Mittelmeier W. Induction of Tumor Cell Death by High Hydrostatic Pressure as a Novel Supporting Technique in Orthopedic Surgery. Oncol. Rep. 2003;10:1851–1855. doi: 10.3892/or.10.6.1851. [DOI] [PubMed] [Google Scholar]
- 182.Frey B., Franz S., Sheriff A., Korn A., Bluemelhuber G., Gaipl U.S., Voll R.E., Meyer-Pittroff R., Herrmann M. Hydrostatic Pressure Induced Death of Mammalian Cells Engages Pathways Related to Apoptosis or Necrosis. Cell. Mol. Biol. 2004;50:459–467. [PubMed] [Google Scholar]
- 183.Korn A., Frey B., Sheriff A., Gaipl U.S., Franz S., Meyer-Pttroff R., Herrmann M., Bluemelhuber G. High Hydrostatic Pressure Inactivated Human Tumour Cells Preserve Their Immunogenicity. Cell. Mol. Biol. 2004;50:65–74. [PubMed] [Google Scholar]
- 184.Takano T., Yamanquchi Y., Satou T., Takano K.J. Pressure-Induced Cell Death and Apoptosis in Human Lymphoblasts. Jpn. J. Hum. Genet. 1997;42:111. doi: 10.1006/excr.1997.3666. [DOI] [PubMed] [Google Scholar]
- 185.Frey B., Hartmann M., Herrmann M., Meyer-Pittroff R., Sommer K., Bluemelhuber G. Microscopy under Pressure—An Optical Chamber System for Fluorescence Microscopic Analysis of Living Cells under High Hydrostatic Pressure. Microsc. Res. Tech. 2006;69:65–72. doi: 10.1002/jemt.20269. [DOI] [PubMed] [Google Scholar]
- 186.Hartmann M., Pfeifer F., Dornheim G., Sommer K. High Pressure Cell for Observing Microscopic Processes under High Pressure. Chem.-Ing.-Tech. 2003;75:1763–1767. doi: 10.1002/cite.200303274. [DOI] [Google Scholar]
- 187.Hartmann M., Kreuss M., Sommer K. High Pressure Microscopy--a Powerful Tool for Monitoring Cells and Macromolecules under High Hydrostatic Pressure. Cell. Mol. Biol. 2004;50:479–484. [PubMed] [Google Scholar]
- 188.Pegg D. Principles of Cryopreservation. Methods Mol Biol. 2007;368:39–57. doi: 10.1007/978-1-59745-362-2_3. [DOI] [PubMed] [Google Scholar]
- 189.Fahy G.M., Wowk B. Principles of Cryopreservation by Vitrification. Methods Mol. Biol. 2015;1257:21–82. doi: 10.1007/978-1-4939-2193-5_2. [DOI] [PubMed] [Google Scholar]
- 190.Weng L., Stott S.L., Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu. Rev. Biomed. Eng. 2018;21:1–31. doi: 10.1146/annurev-bioeng-060418-052130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Towey J.J., Dougan L. Structural Examination of the Impact of Glycerol on Water Structure. J. Phys. Chem. B. 2012;116:1633–1641. doi: 10.1021/jp2093862. [DOI] [PubMed] [Google Scholar]
- 192.Weng L., Ziaei S., Elliott G.D. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and Its Relationship to Preservation Outcomes. Sci. Rep. 2016;6:28795. doi: 10.1038/srep28795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Egorov A.V., Lyubartsev A.P., Laaksonen A. Molecular Dynamics Simulation Study of Glycerol-Water Liquid Mixtures. J. Phys. Chemistry. B. 2011;115:14572–14581. doi: 10.1021/jp208758r. [DOI] [PubMed] [Google Scholar]
- 194.Weng L., Elliott G.D. Dynamic and Thermodynamic Characteristics Associated with the Glass Transition of Amorphous Trehalose-Water Mixtures. Phys. Chem. Chem. Phys. Pccp. 2014;16:11555–11565. doi: 10.1039/C3CP55418J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Conrad P.B., de Pablo J.J. Computer Simulation of the Cryoprotectant Disaccharide α,α-Trehalose in Aqueous Solution. J. Phys. Chem. A. 1999;103:4049–4055. doi: 10.1021/jp984102b. [DOI] [Google Scholar]
- 196.Lerbret A., Bordat P., Affouard F., Descamps M., Migliardo F. How Homogeneous Are the Trehalose, Maltose, and Sucrose Water Solutions? An Insight from Molecular Dynamics Simulations. J. Phys. Chemistry. B. 2005;109:11046–11057. doi: 10.1021/jp0468657. [DOI] [PubMed] [Google Scholar]
- 197.Fahy G.M. The Relevance of Cryoprotectant “Toxicity” to Cryobiology. Cryobiology. 1986;23:1–13. doi: 10.1016/0011-2240(86)90013-1. [DOI] [PubMed] [Google Scholar]
- 198.Fahy G.M., Levy D.I., Ali S.E. Some Emerging Principles Underlying the Physical Properties, Biological Actions, and Utility of Vitrification Solutions. Cryobiology. 1987;24:196–213. doi: 10.1016/0011-2240(87)90023-X. [DOI] [PubMed] [Google Scholar]
- 199.Abazari A., Jomha N.M., Elliott J.A.W., McGann L.E. Cryopreservation of Articular Cartilage. Cryobiology. 2013;66:201–209. doi: 10.1016/j.cryobiol.2013.03.001. [DOI] [PubMed] [Google Scholar]
- 200.Naccache P. Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane. J. Gen. Physiol. 1973;62:714–736. doi: 10.1085/jgp.62.6.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Sum A.K., Faller R., De Pablo J.J. Molecular Simulation Study of Phospholipid Bilayers and Insights of the Interactions with Disaccharides. Biophys. J. 2003;85:2830–2844. doi: 10.1016/S0006-3495(03)74706-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Pereira C.S., Lins R.D., Chandrasekhar I., Freitas L.C.G., Hünenberger P.H. Interaction of the Disaccharide Trehalose with a Phospholipid Bilayer: A Molecular Dynamics Study. Biophys. J. 2004;86:2273–2285. doi: 10.1016/S0006-3495(04)74285-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Pereira C.S., Hünenberger P.H. Interaction of the Sugars Trehalose, Maltose and Glucose with a Phospholipid Bilayer: A Comparative Molecular Dynamics Study. J. Phys. Chem. B. 2006;110:15572–15581. doi: 10.1021/jp060789l. [DOI] [PubMed] [Google Scholar]
- 204.Hughes Z.E., Malajczuk C.J., Mancera R.L. The Effects of Cryosolvents on DOPC-β-Sitosterol Bilayers Determined from Molecular Dynamics Simulations. J. Phys. Chem. B. 2013;117:3362–3375. doi: 10.1021/jp400975y. [DOI] [PubMed] [Google Scholar]
- 205.Malajczuk C.J., Hughes Z.E., Mancera R.L. Molecular Dynamics Simulations of the Interactions of DMSO, Mono- and Polyhydroxylated Cryosolvents with a Hydrated Phospholipid Bilayer. Biochim. Et Biophys. Acta-Biomembr. 2013;1828:2041–2055. doi: 10.1016/j.bbamem.2013.05.010. [DOI] [PubMed] [Google Scholar]
- 206.Notman R., Noro M., O’Malley B., Anwar J. Molecular Basis for Dimethylsulfoxide (DMSO) Action on Lipid Membranes. J. Am. Chem. Soc. 2006;128:13982–13983. doi: 10.1021/ja063363t. [DOI] [PubMed] [Google Scholar]
- 207.Gurtovenko A.A., Anwar J. Modulating the Structure and Properties of Cell Membranes: The Molecular Mechanism of Action of Dimethyl Sulfoxide. J. Phys. Chem. B. 2007;111:10453–10460. doi: 10.1021/jp073113e. [DOI] [PubMed] [Google Scholar]
- 208.Hughes Z.E., Mark A.E., Mancera R.L. Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes. J. Phys. Chem. B. 2012;116:11911–11923. doi: 10.1021/jp3035538. [DOI] [PubMed] [Google Scholar]
- 209.Warner R.M., Ampo E., Nelson D., Benson J.D., Eroglu A., Higgins A.Z. Rapid Quantification of Multi-Cryoprotectant Toxicity Using an Automated Liquid Handling Method. Cryobiology. 2021;98:219–232. doi: 10.1016/j.cryobiol.2020.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Benson J.D., Higgins A.Z., Desai K., Eroglu A. A Toxicity Cost Function Approach to Optimal CPA Equilibration in Tissues. Cryobiology. 2018;80:144–155. doi: 10.1016/j.cryobiol.2017.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Benson J.D., Kearsley A.J., Higgins A.Z. Mathematical Optimization of Procedures for Cryoprotectant Equilibration Using a Toxicity Cost Function. Cryobiology. 2012;64:144–151. doi: 10.1016/j.cryobiol.2012.01.001. [DOI] [PubMed] [Google Scholar]
- 212.Glick D., Malmstrom B.G. Studies in Histochemistry XXIII. Simple and Efficient Freezing-Drying Apparatus for the Preparation of Embedded Tissue. Exp. Cell Res. 1952;3:125–135. doi: 10.1016/0014-4827(52)90036-0. [DOI] [Google Scholar]
- 213.REBHUN L.I. Applications of Freeze-Substitution to Electron Microscope Studies of Invertebrate Oocytes. J. Biophys. Biochem. Cytol. 1961;9:785–798. doi: 10.1083/jcb.9.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Rick R., Dörge A., Thurau K. Quantitative Analysis of Electrolytes in Frozen Dried Sections. J. Microsc. 1982;125:239–247. doi: 10.1111/j.1365-2818.1982.tb00342.x. [DOI] [PubMed] [Google Scholar]
- 215.Steinbrecht R.A. Cryofixation without Cryoprotectants. Freeze Substitution and Freeze Etching of an Insect Olfactory Receptor. Tissue Cell. 1980;12:73–100. doi: 10.1016/0040-8166(80)90053-1. [DOI] [PubMed] [Google Scholar]
- 216.Steinbrecht R.A. Experiments on Freezing Damage with Freeze Substitution Using Moth Antennae as Test Objects. J. Microsc. 1982;125:187–192. doi: 10.1111/j.1365-2818.1982.tb00336.x. [DOI] [Google Scholar]
- 217.Porter K.R., Anderson K.L. The Structure of the Cytoplasmic Matrix Preserved by Freeze-Drying and Freeze-Substitution. Eur. J. Cell Biol. 1982;29:83–96. [PubMed] [Google Scholar]
- 218.Silvester N.R., Marchese-Ragona S., Johnston D.N. The Relative Efficiency of Various Fluids in the Rapid Freezing of Protozoa. J. Microsc. 1982;128:175–186. doi: 10.1111/j.1365-2818.1982.tb00449.x. [DOI] [PubMed] [Google Scholar]
- 219.Severs N. Rapid Freezing of Unpretreated Tissues for Freeze-Fracture Electron Microscopy. Wiley-Liss; New York, NY, USA: 1983. [Google Scholar]
- 220.Moor H., Mühletttaler K. Fine Structure in Frozen-Etched Yeast Cells. J. Cell Biol. 1963;17:609–628. doi: 10.1083/jcb.17.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Bank H., Mazur P. Visualization of Freezing Damage. J. Cell Biol. 1973;57:729–742. doi: 10.1083/jcb.57.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Howard R.J., Aist J.R. Hyphal Tip Cell Ultrastructure of the Fungus Fusarium: Improved Preservation by Freeze-Substitution. J. Ultrasructure Res. 1979;66:224–234. doi: 10.1016/S0022-5320(79)90120-5. [DOI] [PubMed] [Google Scholar]
- 223.Howard R.J., Aist J.R. Cytoplasmic Microtubules and Fungal Morphogenesis: Ultrastructural Effects of Methyl Benzimidazole-2-Ylcarbamate Determined by Freeze-Substitution of Hyphal Tip Cells. J. Cell Biol. 1980;87:55–64. doi: 10.1083/jcb.87.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Allen N.S. Cytoplasmic Streaming and Transport in the Characean Alga Nitella. Can. J. Bot. 1980;58:786–796. doi: 10.1139/b80-100. [DOI] [Google Scholar]
- 225.Hoch H.C., Howard R.J. Ultrastructure of Freeze-Substituted Hyphae of the Basidiomycete Laetisaria Arvalis. Protoplasma. 1980;103:281–297. doi: 10.1007/BF01276274. [DOI] [Google Scholar]
- 226.Gupta B.L., Hall T.A. The X-Ray Microanalysis of Frozen-Hydrated Sections in Scanning Electron Microscopy: An Evaluation. Tissue Cell. 1981;13:623–643. doi: 10.1016/S0040-8166(81)80001-8. [DOI] [PubMed] [Google Scholar]
- 227.Howard R.J. Ultrastructural Analysis of Hyphal Tip Cell Growth in Fungi: Spitzenkorper, Cytoskeleton and Endomembranes after Freeze-Substitution. J. Cell Sci. 1981;48:89–103. doi: 10.1242/jcs.48.1.89. [DOI] [PubMed] [Google Scholar]
- 228.Handley D.A., Alexander J.T., Chien S. The Design and Use of a Simple Device for Rapid Quench-freezing of Biological Samples. J. Microsc. 1981;121:273–282. doi: 10.1111/j.1365-2818.1981.tb01224.x. [DOI] [PubMed] [Google Scholar]
- 229.Bellare J.R., Davis H.T., Scriven L.E., Talmon Y. Controlled Environment Vitrification System: An Improved Sample Preparation Technique. J. Electron Microsc. Tech. 1988;10:87–111. doi: 10.1002/jemt.1060100111. [DOI] [PubMed] [Google Scholar]
- 230.Ryan K.P., Purse D.H., Robinson S.G., Wood J.W. The Relative Efficiency of Cryogens Used for Plunge-Cooling Biological Specimens. J. Microsc. 1987;145:89–96. doi: 10.1111/j.1365-2818.1987.tb01318.x. [DOI] [PubMed] [Google Scholar]
- 231.Glover A.J., Garvitch Z.S. The Freezing Rate of Freeze-Etch Specimens for Electron Microscopy. Cryobiology. 1974;11:248–254. doi: 10.1016/0011-2240(74)90099-6. [DOI] [PubMed] [Google Scholar]
- 232.Escaig J. New Instruments Which Facilitate Rapid Freezing at 83 K and 6 K. J. Microsc. 1982;126:221–229. doi: 10.1111/j.1365-2818.1982.tb00379.x. [DOI] [Google Scholar]
- 233.Heath I.B., Rethoret K. Mitosis in the Fungus Zygorhynchus Moelleri: Evidence for Stage Specific Enhancement of Microtubule Preservation by Freeze Substitution. Eur. J. Cell. Biol. 1982;28:180–189. [PubMed] [Google Scholar]
- 234.Costello M.J., Corless J.M. The Direct Measurement of Temperature Changes within Freeze-fracture Specimens during Rapid Quenching in Liquid Coolants. J. Microsc. 1978;112:17–37. doi: 10.1111/j.1365-2818.1978.tb01151.x. [DOI] [PubMed] [Google Scholar]
- 235.Schwabe K.G., Terracio L. Ultrastructural and Thermocouple Evaluation of Rapid Freezing Techniques. Cryobiology. 1980;17:571–584. doi: 10.1016/0011-2240(80)90072-3. [DOI] [PubMed] [Google Scholar]
- 236.Marchese-Ragona S.P. Ethanol, an Efficient Coolant for Rapid Freezing of Biological Material. J. Microsc. 1984;134:169–171. doi: 10.1111/j.1365-2818.1984.tb02506.x. [DOI] [PubMed] [Google Scholar]
- 237.Steinbrecht R.A., Zierold K. A Cryoembedding Method for Cutting Ultrathin Cryosections from Small Frozen Specimens. J. Microsc. 1984;136:69–75. doi: 10.1111/j.1365-2818.1984.tb02546.x. [DOI] [PubMed] [Google Scholar]
- 238.Lee H.N., Park J.K., Paek S.K., Byun J.H., Song H., Lee H.J., Chang E.M., Kim J.W., Lee W.S., Lyu S.W. Does Duration of Cryostorage Affect Survival Rate, Pregnancy, and Neonatal Outcomes? Large-Scale Single-Center Study of Slush Nitrogen (SN2) Vitrified-Warmed Blastocysts. Int. J. Gynecol. Obstet. 2021;152:351–357. doi: 10.1002/ijgo.13381. [DOI] [PubMed] [Google Scholar]
- 239.Osman E.K., Esbert M., Hanson B.M., Winslow A.D., Seli E., Scott R.T. EMBRYO VITRIFICATION IN SUPER COOLED SLUSH NITROGEN RESULTS IN SUPERIOR POST-THAW SURVIVAL COMPARED TO CONVENTIONAL LIQUID NITROGEN: A BLINDED, RANDOMIZED CONTROLLED TRIAL. Fertil. Steril. 2020;114:e38. doi: 10.1016/j.fertnstert.2020.08.1413. [DOI] [Google Scholar]
- 240.Ryan K.P., Liddicoat M.I. Safety Considerations Regarding the Use of Propane and Other Liquefied Gases as Coolants for Rapid Freezing Purposes. J. Microsc. 1987;147:337–340. doi: 10.1111/j.1365-2818.1987.tb02845.x. [DOI] [PubMed] [Google Scholar]
- 241.Mueller M., Meister N., Moor H. Freezing in a Propane Jet and Its Application in Freeze-Fracturing. Mikroskopie. 1980;36:129–140. [PubMed] [Google Scholar]
- 242.Greene W.B., Walsh L.G. An Improved Cryo-Jet Freezing Method. J. Microsc. 1992;166:207–218. doi: 10.1111/j.1365-2818.1992.tb01519.x. [DOI] [PubMed] [Google Scholar]
- 243.Knoll G., Oebel G., Plattner H. A Simple Sandwich-Cryogen-Jet Procedure with High Cooling Rates for Cryofixation of Biological Materials in the Native State. Protoplasma. 1982;111:161–176. doi: 10.1007/BF01281964. [DOI] [Google Scholar]
- 244.Pscheid P., Schudt C., Plattner H. Cryofixation of Monolayer Cell Cultures for Freeze-Fracturing without Chemical Pre-Treatments. J. Microsc. 1981;121:149–167. doi: 10.1111/j.1365-2818.1981.tb01208.x. [DOI] [PubMed] [Google Scholar]
- 245.Boyne A. A Gentle, Bounce-Free Assembly for Quick-Freezing Tissues for Electron Microscopy: Application to Isolated Torpedine Ray Electrocyte Stacks. J. Neurosci. Methods. 1979;1:353–364. doi: 10.1016/0165-0270(79)90024-4. [DOI] [PubMed] [Google Scholar]
- 246.Heuser J., Reese T., Dennis M., Jan Y. Synaptic Vesicle Exocytosis Captured by Quick Freezing and Correlated with Quantal Transmitter Release. J. Cell Biol. 1979;81:275. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.Heuser J., Reese T., Landis D. Preservation of Synaptic Structure by Rapid Freezing. Cold Spring Harb Symp Quant Biol. 1976;40:17–24. doi: 10.1101/SQB.1976.040.01.004. [DOI] [PubMed] [Google Scholar]
- 248.Simpson W.L. An Experimental Analysis of the Altmann Technic of Freezing-Drying. Anat. Rec. 1941;80:173–189. doi: 10.1002/ar.1090800204. [DOI] [Google Scholar]
- 249.van Harreveld A., Crowell J. Electron Microscopy after Rapid Freezing on a Metal Surface and Substitution Fixation. Anat. Rec. 1964;149:381–385. doi: 10.1002/ar.1091490307. [DOI] [PubMed] [Google Scholar]
- 250.Van Harreveld A., Crowell J., Malhotra S. A Study of Extracellular Space in Central Nervous Tissue by Freeze-Substitution. J. Cell Biol. 1965;25:117. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Phillips T.E., Boyne A.F. Liquid Nitrogen-based Quick Freezing: Experiences with Bounce-free Delivery of Cholinergic Nerve Terminals to a Metal Surface. J. Electron Microsc. Tech. 1984;1:9–29. doi: 10.1002/jemt.1060010103. [DOI] [Google Scholar]
- 252.Heath I.B. A Simple and Inexpensive Liquid Helium Cooled ‘Slam Freezing’ Device. J. Microsc. 1984;135:75–82. doi: 10.1111/j.1365-2818.1984.tb04650.x. [DOI] [PubMed] [Google Scholar]
- 253.Hirokawa N., Kirino T. An Ultrastructural Study of Nerve and Glial Cells by Freeze-Substitution. J. Neurocytol. 1980;9:243–254. doi: 10.1007/BF01205160. [DOI] [PubMed] [Google Scholar]
- 254.Ichikawa A., Ichikawa M., Hirokawa N. The Ultrastructure of Rapid-frozen, Substitution Fixed Parotid Gland Acinar Cells of the Mongolian Gerbil (Meriones Meridianus) Am. J. Anat. 1980;157:107–110. doi: 10.1002/aja.1001570110. [DOI] [PubMed] [Google Scholar]
- 255.Ornberg R., Reese T. A Freeze-Substitution Method for Localizing Divalent Cations: Examples from Secretory Systems. europepmc.org. 1980;3:2802–2808. [PubMed] [Google Scholar]
- 256.Hirokawa N., Heuser J. Quick-Freeze, Deep-Etch Visualization of the Cytoskeleton beneath Surface Differentiations of Intestinal Epithelial Cells. J. Cell Biol. 1981;91:399. doi: 10.1083/jcb.91.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Terracio L., Bankston P., McAteer J. Ultrastructural Observations on Tissues Processed by a Quick-Freezing, Rapid-Drying Method: Comparison with Conventional Specimen Preparation. Elsevier. 1981;18:55–71. doi: 10.1016/0011-2240(81)90006-7. [DOI] [PubMed] [Google Scholar]
- 258.Hirokawa N. Cross-Linker System between Neurofilaments, Microtubules and Membranous Organelles in Frog Axons Revealed by the Quick-Freeze, Deep-Etching Method. J. Cell Biol. 1982;94:129. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Schnapp B., Reese T. Cytoplasmic Structure in Rapid-Frozen Axons. J. Cell Biol. 1982;94:667. doi: 10.1083/jcb.94.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.McGuire P.G., Twietmeyer T.A. Morphology of Rapidly Frozen Aortic Endothelial Cells. Glutaraldehyde Fixation Increases the Number of Caveolae. Circ. Res. 1983;53:424–429. doi: 10.1161/01.RES.53.3.424. [DOI] [PubMed] [Google Scholar]
- 261.Menco B.P.M. Ciliated and Microvillous Structures of Rat Olfactory and Nasal Respiratory Epithelia—A Study Using Ultra-Rapid Cryo-Fixation Followed by Freeze-Substitution or Freeze-Etching. Cell Tissue Res. 1984;235:225–241. doi: 10.1007/BF00217846. [DOI] [PubMed] [Google Scholar]
- 262.Chandler D., Heuser J. Membrane Fusion during Secretion: Cortical Granule Exocytosis in Sex Urchin Eggs as Studied by Quick-Freezing and Freeze-Fracture. J. Cell Biol. 1979;83:91. doi: 10.1083/jcb.83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 263.Chandler D., Heuser J. Arrest of Membrane Fusion Events in Mast Cells by Quick-Freezing. J. Cell Biol. 1980;86:666. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.Ornberg R., Reese T. Beginning of Exocytosis Captured by Rapid-Freezing of Limulus Amebocytes. J. Cell Biol. 1981;90:40. doi: 10.1083/jcb.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Chandler D. Comparison of Quick-Frozen and Chemically Fixed Sea-Urchin Eggs: Structural Evidence That Cortical Granule Exocytosis Is Preceded by a Local Increase in Membrane. J. Cell Sci. 1984;72:23–36. doi: 10.1242/jcs.72.1.23. [DOI] [PubMed] [Google Scholar]
- 266.Wagner R., Andrews S. Ultrastructure of the Vesicular System in Rapidly Frozen Capillary Endothelium of the Rete Mirabile. J. Ultrastruct. Res. 1985;90:172–182. doi: 10.1016/0889-1605(85)90107-7. [DOI] [Google Scholar]
- 267.Plattner H., Bachmann L. Cryofixation: A Tool in Biological Ultrastructural Research. Elsevier. 1982;79:237–304. doi: 10.1016/s0074-7696(08)61676-9. [DOI] [PubMed] [Google Scholar]
- 268.Christensen A.K. Frozen Thin Sections of Fresh Tissue for Electron Microscopy, with a Description of Pancreas and Liver. J. Cell Biol. 1971;51:772–804. doi: 10.1083/jcb.51.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 269.Dempsey G.P., Bullivant S. A Copper Block Method for Freezing Non-cryoprotected Tissue to Produce Ice-crystal-free Regions for Electron Microscopy: I. Evaluation Using Freeze-substitution. J. Microsc. 1976;106:251–260. doi: 10.1111/j.1365-2818.1976.tb02405.x. [DOI] [PubMed] [Google Scholar]
- 270.Eränkö O. Quenching of Tissues for Freeze-Drying. Cells Tissues Organs. 1954;22:331–336. doi: 10.1159/000140966. [DOI] [PubMed] [Google Scholar]
- 271.Wollenberger A., Ristau O., Schoffa G. Eine Einfache Technik Der Extrem Schnellen Abkühlung Größerer Gewebestücke. Pflügers Arch. Für Die Gesamte Physiol. Des Menschen Und Der Tiere. 1960;270:399–412. doi: 10.1007/BF00362995. [DOI] [PubMed] [Google Scholar]
- 272.Sjöström M., Cytochemistry R.J. Cryo-Ultramicrotomy of Muscles in Defined State. Methodological Aspects. North-Holland Publishing Company; Amsterdam, The Netherlands: 1974. [Google Scholar]
- 273.Moor H. Recent Progress in the Freeze-Etching Technique. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1971;261:121–131. doi: 10.1098/rstb.1971.0042. [DOI] [PubMed] [Google Scholar]
- 274.Moor H., Bellin G., Sandri C., Akert K. The Influence of High Pressure Freezing on Mammalian Nerve Tissue. Cell Tissue Res. 1980;209:201–216. doi: 10.1007/BF00237626. [DOI] [PubMed] [Google Scholar]
- 275.Hunziker E.B., Herrmann W., Schenk R.K., Mueller M., Moor H. Cartilage Ultrastructure after High Pressure Freezing, Freeze Substition, and Low Temperature Embedding. I. Chondrocyte Ultrastructure—Implications for the Theories of Mineralization and Vascular Invasion. J. Cell Biol. 1984;98:267–276. doi: 10.1083/jcb.98.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 276.Marti R., Wild P., Schraner E.M., Mueller M., Moor H. Parathyroid Ultrastructure after Aldehyde Fixation, High-Pressure Freezing, or Microwave Irradiation. J. Histochem. Cytochem. 1987;35:1415–1424. doi: 10.1177/35.12.3680934. [DOI] [PubMed] [Google Scholar]
- 277.Wolf K.V., Stockem W., Wohlfarth-Bottermann K.E., Moor H. Cytoplasmic Actomyosin Fibrils after Preservation with High Pressure Freezing. Cell Tissue Res. 1981;217:479–495. doi: 10.1007/BF00219359. [DOI] [PubMed] [Google Scholar]
- 278.Wan L., Powell-Palm M., Lee C., Gupta A., Weegman B., Clemens M., Rubinsky B. Preservation of Rat Hearts in Subfreezing Temperature Isochoric Conditions to—8 C and 78 MPa. Biochem. Biophys. Res. Commun. 2018;496:852–857. doi: 10.1016/j.bbrc.2018.01.140. [DOI] [PubMed] [Google Scholar]
- 279.Năstase G., Lyu C., Ukpai G., Şerban A., Rubinsky B. Isochoric and Isobaric Freezing of Fish Muscle. Biochem. Biophys. Res. Commun. 2017;485:279–283. doi: 10.1016/j.bbrc.2017.02.091. [DOI] [PubMed] [Google Scholar]
- 280.Preciado J., Rubinsky B. The Effect of Isochoric Freezing on Mammalian Cells in an Extracellular Phosphate Buffered Solution. Cryobiology. 2018;82:155–158. doi: 10.1016/j.cryobiol.2018.04.004. [DOI] [PubMed] [Google Scholar]
- 281.Pauli B.U., Weinstein R.S., Soble L.W., Alroy J. Freeze Fracture of Monolayer Cultures. J. Cell Biol. 1977;72:763–769. doi: 10.1083/jcb.72.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Saritha K.R., Bongso A. Comparative Evaluation of Fresh and Washed Human Sperm Cryopreserved in Vapor and Liquid Phases of Liquid Nitrogen. J. Androl. 2001;22:857–862. doi: 10.1002/j.1939-4640.2001.tb02591.x. [DOI] [PubMed] [Google Scholar]
- 283.Chang H.J., Lee J.R., Chae S.J., Jee B.C., Suh C.S., Kim S.H. Comparative Study of Two Cryopreservation Methods of Human Spermatozoa: Vitrification versus Slow Freezing. Fertil. Steril. 2008;90:S280. doi: 10.1016/j.fertnstert.2008.07.1085. [DOI] [Google Scholar]
- 284.Deng X., Hua Z., Xuan Y., Hongling Y., Chengmei Z., Lan C., Ruichang L., Wenjun L. Cryopreserved Ovarian Tissues Can Maintain a Long-Term Function after Heterotopic Autotransplantation in Rat. Reproduction. 2009;138:519–525. doi: 10.1530/REP-09-0151. [DOI] [PubMed] [Google Scholar]
- 285.Lee J., Kim E.J., Kong H.S., Youm H.W., Kim S.K., Lee J.R., Suh C.S., Kim S.H. Establishment of an Improved Vitrification Protocol by Combinations of Vitrification Medium for Isolated Mouse Ovarian Follicles. Theriogenology. 2018;121:97–103. doi: 10.1016/j.theriogenology.2018.07.022. [DOI] [PubMed] [Google Scholar]
- 286.Ramezani M., Salehnia M., Jafarabadi M. Short Term Culture of Vitrified Human Ovarian Cortical Tissue to Assess the Cryopreservation Outcome: Molecular and Morphological Analysis. J. Reprod. Infertil. 2017;18:162. [PMC free article] [PubMed] [Google Scholar]
- 287.Murray P.W.L.R., Robards A.W., Waites P.R. Countercurrent Plunge Cooling: A New Approach to Increase Reproducibility in the Quick Freezing of Biological Tissue. J. Microsc. 1989;156:173–182. doi: 10.1111/j.1365-2818.1989.tb02916.x. [DOI] [Google Scholar]
- 288.Bridgman P.C., Reese T.S. The Structure of Cytoplasm in Directly Frozen Cultured Cells. I. Filamentous Meshworks and the Cytoplasmic Ground Substance. J. Cell Biol. 1984;99:1655–1668. doi: 10.1083/jcb.99.5.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 289.FEDER N., SIDMAN R.L. Methods and Principles of Fixation by Freeze-Substitution. J. Biophys. Biochem. Cytol. 1958;4:593–600. doi: 10.1083/jcb.4.5.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 290.Paul A.K., Liang Y., Srirattana K., Nagai T., Parnpai R. Vitrification of Bovine Matured Oocytes and Blastocysts in a Paper Container. Anim. Sci. J. 2018;89:307–315. doi: 10.1111/asj.12892. [DOI] [PubMed] [Google Scholar]
- 291.Arav A., Natan Y., Kalo D., Komsky-Elbaz A., Roth Z., Levi-Setti P.E., Leong M., Patrizio P. A New, Simple, Automatic Vitrification Device: Preliminary Results with Murine and Bovine Oocytes and Embryos. J. Assist. Reprod. Genet. 2018;35:1161–1168. doi: 10.1007/s10815-018-1210-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 292.Olexiková L., Makarevich A.V., Bédeová L., Kubovičová E. The Technique for Cryopreservation of Cattle Eggs. Slovak J. Anim. Sci. 2019;52:166–170. [Google Scholar]
- 293.Bachmann L., Schmitt W.W. Improved Cryofixation Applicable to Freeze Etching (Spray-Freezing/Solute Model Systems/Liquid Nitrogen and Propane) 1971. [(accessed on 19 May 2020)]. Volume 68. Available online: https://www.pnas.org/content/68/9/2149.short.
- 294.Knoll G., Braun C., Plattner H. Quenched Flow Analysis of Exocytosis in Paramecium Cells: Time Course, Changes in Membrane Structure, and Calcium Requirements Revealed after Rapid Mixing and Rapid Freezing of Intact Cells. J. Cell Biol. 1991;113:1295–1304. doi: 10.1083/jcb.113.6.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 295.De Vries R.J., Banik P.D., Nagpal S., Weng L., Ozer S., Van Gulik T.M., Toner M., Tessier S.N., Uygun K. Bulk Droplet Vitrification: An Approach to Improve Large-Scale Hepatocyte Cryopreservation Outcome. Langmuir. 2019;35:7354–7363. doi: 10.1021/acs.langmuir.8b02831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 296.Dou R., Saunders R., Mohamet L., Ward C., Chip B.D.-L. on a; 2015, undefined. High Throughput Cryopreservation of Cells by Rapid Freezing of Sub-Μl Drops Using Inkjet Printing–Cryoprinting. Lab a Chip. 2015;15:3503–3513. doi: 10.1039/C5LC00674K. [DOI] [PubMed] [Google Scholar]
- 297.Plattner H., Artalejo A.R., Neher E. Ultrastructural Organization of Bovine Chromaffin Cell Cortex—Analysis by Cryofixation and Morphometry of Aspects Pertinent to Exocytosis. J. Cell Biol. 1997;139:1709–1717. doi: 10.1083/jcb.139.7.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Espevik T., Elgsaeter A. In Situ Liquid Propane Jet-Freezing and Freeze-Etching of Monolayer Cell Cultures. J. Microsc. 1981;123:105–110. doi: 10.1111/j.1365-2818.1981.tb01284.x. [DOI] [PubMed] [Google Scholar]
- 299.Katkov I.I., Bolyukh V.F., Sukhikh G.T. KrioBlast TM as a New Technology of Ultrafast Cryopreservation of Cells and Tissues. 2. Kinetic Vitrification of Human Pluripotent Stem Cells and Spermatozoa. Bull. Exp. Biol. Med. 2018;165:63–68. doi: 10.1007/s10517-018-4122-x. [DOI] [PubMed] [Google Scholar]
- 300.Bolyukh V.F., Katkov I.I., Bolyukh V.F. KRIOBLAST TM: A PROMISING CRYOGENIC PLATFORM FOR KINETIC VITRIFICATION BY HYPERFATST COOLING; Proceedings of the 2nd Thermal and Fluid Engineering Conference, TFEC2017, 4th International Workshop on Heat Transfer, IWHT2017; Las Vegas, NV, USA. 2–5 April 2017. [Google Scholar]
- 301.Patra T., Gupta M.K. Solid Surface Vitrification of Goat Testicular Cell Suspension Enriched for Spermatogonial Stem Cells. Cryobiology. 2022;104:8–14. doi: 10.1016/j.cryobiol.2021.11.177. [DOI] [PubMed] [Google Scholar]
- 302.Patra T., Gupta M.K. Cryopreservation of Murine Testicular Leydig Cells by Modified Solid Surface Vitrification with Supplementation of Antioxidants. Cryobiology. 2019;88:38–46. doi: 10.1016/j.cryobiol.2019.04.002. [DOI] [PubMed] [Google Scholar]
- 303.Brito D.C.C., Domingues S.F.S., Rodrigues A.P.R., Figueiredo J.R., Santos R.R., Pieczarka J.C. Vitrification of Domestic Cat (Felis Catus) Ovarian Tissue: Effects of Three Different Sugars. Cryobiology. 2018;83:97–99. doi: 10.1016/j.cryobiol.2018.06.006. [DOI] [PubMed] [Google Scholar]
- 304.Rodriguez Villamil P., Lozano D., Oviedo J.M., Ongaratto F.L., Bó G.A. Developmental Rates of in Vivo and in Vitro Produced Bovine Embryos Cryopreserved in Ethylene Glycol Based Solutions by Slow Freezing or Solid Surface Vitrification. Anim. Reprod. 2012;9:86–92. [Google Scholar]
- 305.Sharma A., Bischof J.C., Finger E.B. Liver Cryopreservation for Regenerative Medicine Applications. Regen. Eng. Transl. Med. 2021;7:57–65. doi: 10.1007/s40883-019-00131-4. [DOI] [Google Scholar]
- 306.Manuchehrabadi N., Gao Z., Zhang J., Ring H.L., Shao Q., Liu F., McDermott M., Fok A., Rabin Y., Brockbank K.G.M. Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles. Sci. Transl. Med. 2017;9:eaah4586. doi: 10.1126/scitranslmed.aah4586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 307.Khosla K., Zhan L., Bhati A., Carley-Clopton A., Hagedorn M., Bischof J. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir. 2019;35:7364–7375. doi: 10.1021/acs.langmuir.8b03011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Ruan H., Wang T., Gao C. Microwave-Water Bath Hybrid Warming for Frozen Cryoprotectant Solution Using a Helical Antenna. Cryoletters. 2020;41:26–30. [PubMed] [Google Scholar]
- 309.Zhan L., Han Z., Shao Q., Etheridge M.L., Hays T., Bischof J.C. Rapid Joule Heating Improves Vitrification Based Cryopreservation. Nat. Commun. 2022;13:1–15. doi: 10.1038/s41467-022-33546-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 310.Giwa S., Lewis J.K., Alvarez L., Langer R., Roth A.E., Church G.M., Markmann J.F., Sachs D.H., Chandraker A., Wertheim J.A. The Promise of Organ and Tissue Preservation to Transform Medicine. Nat. Biotechnol. 2017;35:530–542. doi: 10.1038/nbt.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
Comments
Post a Comment